How an age-old process could lead to new materials and even invisibility
A Q&A with Ashwin Shahani, U-M assistant professor of materials science and engineering
A Q&A with Ashwin Shahani, U-M assistant professor of materials science and engineering
Humans have been cooling metal mixtures from liquid to solid for thousands of years. But surprisingly, not much is known about exactly what happens during the process of solidification. Particularly puzzling is the solidification of eutectics, which are mixtures of two or more solid phases.
U-M professor Ashwin Shahani is working to solve the mystery of eutectic solidification, and his research has revealed an intricate and beautiful universe of nanoscale rods, sheets and spirals that form spontaneously in cooling metal alloys.
We sat down recently to talk with him about his work, and how it could lead to a new generation of lightweight alloys and optical products with properties superior to monolithic materials.
I think it’s one of the most remarkable feats of nature. How can these elaborate patterns form spontaneously from a disordered liquid? Why does nature choose one pattern or configuration over another? A lot of it is just inborn curiosity and the joy of sharing it with my students.
A material’s nanoscale structure changes its properties. So if we can understand why a given structure forms, we can design a manufacturing process to recreate it, or even change it to build in specific properties that we want. We can make materials that are lighter, or stronger, or that bend light in a certain way, for example.
A material that bends light in a certain way could be used to make an invisibility coating. You could engineer a single sheet of metal with properties that differ along its surface—for example an airplane wing that’s stronger in some places and lighter in others. You could make lighter and more fuel-efficient automotive components. The possibilities are just about endless.
We can, but it’s extremely difficult and time-consuming. If we want to fabricate a nanoscale spiral pattern, for example, we have to use lithography to print each tiny spiral. That’s not practical for large-scale manufacturing. But what if you could cause those spirals to self-assemble just by cooling the liquid differently or slightly changing its mix of metals? That would make the process much faster and more scalable.
Because in the past, this kind of research relied on sectioning up a material that has already solidified and looking at it under the microscope. And that gives you a very limited view of how solidification happens.
We’re using a unique combination of multi-scale and multi-modal imaging technologies to create a 3D picture of what’s happening in real time during the solidification process. It involves combining a lot of different imaging techniques that can give us a cohesive picture from the scale of micrometers all the way down to individual atoms.
One of the biggest challenges is that high-resolution 3D images are just so data-intensive. That makes this a big data challenge as well as a materials science challenge. Obviously, just having a high level of computing power is important, but we’ve also introduced some novel strategies. For example, we’ve begun using machine learning algorithms to comb through our data and find things that are noteworthy.
Most engineering materials consist of not just two components but a cocktail of elements. So right now, we’re looking at how chemistry affects the solidification process. If I add a small amount of another metal to the molten mix, how does that change the nanoscale structures that form? It’s another step toward understanding and ultimately controlling these structures.
The paper is titled “Multi-Step Crystallization of Self-Organized Spiral Eutectics.” It was published on January 23, 2020 in the journal Small.