The Michigan Engineer News Center

Pioneering a way to keep very small satellites in orbit

More than 250 students had a hand in a satellite scheduled to launch on January 17th, the first in space for a project to keep nanosats in orbit by harnessing Earth’s magnetic field. | Medium Read

Launch was initially scheduled for Sunday, Jan. 10, and is currently slated for Sunday, Jan.  17.

A cubesat, largely built by undergraduate students and scheduled to launch on Sunday, will explore the feasibility of a new propulsion method that could enable very small satellites to move around Earth’s orbit without carrying fuel. This could pave the way for tiny satellites that stay in orbit for long periods and operate in swarms, monitoring storms and natural disasters, for example.

A cubesat is about the size of a loaf of bread, designed to hitch a ride into space with a major mission. Cubesats are low-cost ways to test out new technologies or enable students to get hands-on experience with space exploration. MiTEE is scheduled to fly from the Mojave Air and Space Port on Virgin Orbit’s Launch Demo 2. 

While Earth’s atmosphere is much thicker on the ground, a scattering of air particles stretch all the way up to low Earth orbit—the territory of about 60 percent of Earth-orbiting satellites. Small satellites are more strongly affected by the drag of the upper atmosphere than large satellites, slowing their orbits and causing them to drop toward the Earth.

“These smaller spacecraft just don’t last very long, maybe even days to weeks, or a few months, dependent upon how high they are,” said Brian Gilchrist, a professor of electrical engineering and computer science, who supervised the team.

And, unlike larger satellites, most small satellites can’t fight the drag. Propulsion is typically achieved by pushing something in the opposite direction of travel, but this means carrying extra material on the satellite that adds weight and is a limited resource.

But because small satellites are so light, they may be able to take advantage of a different means of propulsion. Rather than relying on Newton’s equal-and-opposite reactions to move around, they may be able to harness the more subtle laws of electromagnetism.

The team is studying the idea of tethering two cell phone sized small satellites with a wire 10 to 30 meters long that is able to drive current in either direction using power from solar panels and closing the electrical circuit through the Earth’s ionosphere. When a wire conducts a current in a magnetic field, that magnetic field exerts a force on the wire. The team plans to use the force from the Earth’s magnetic field to climb higher in orbit, compensating for the drag of the atmosphere.

The first experiments to test the idea will be on a CubeSat satellite called MiTEE-1: The Miniature Tether Electrodynamics Experiment-1. The version being launched was designed and built by more than 250 students, over a course of six years. They were mentored by engineers and technicians of the U-M Space Physics Research Laboratory (SPRL). The version launching now will have a deployable rigid boom, one meter long, between one satellite the size of a bread box and another the size of a large smartphone. It will measure how much current can be drawn from the ionosphere under different conditions. 

“It’s the first time MiTEE will launch a satellite, and it’s been a long time coming. I’m excited to finally see the result of years of effort,” Lauren Citkowski, an aerospace engineering senior.

In two and a half years on the project, Citkowski is grateful for the experiences that built both her technical skills, such as soldering and assembling electronics, and the communication and interpersonal skills that will enable her to thrive on interdisciplinary engineering teams.

The MiTEE project continues at U-M, taking data from this satellite and planning the next. A future version with a longer tether between the satellites, 30 feet or more, would demonstrate that this form of electromagnetic propulsion could keep the device in orbit.

The MiTEE project participates in the Multidisciplinary Design Program (MDP), which helps match students from across the University with faculty research—from first year undergraduates to masters level students. Through MDP, the U-M College of Engineering also funds fellowships for students from low and middle income families, or who are in the first generation of the family to attend college. All students who participate in MDP gain hands-on experience in research and industry, preparing them for careers in engineering and space sciences.

Gilchrist is also a professor of climate and space sciences and engineering.

Portrait of Kate McAlpine

Contact

Kate McAlpine
Senior Writer & Assistant News Editor

Michigan Engineering
Communications & Marketing

(734) 763-2937

3214 SI-North

Researchers
  • Brian Gilchrist

    Brian Gilchrist

    Professor of Electrical Engineering and Computer Science, Professor of Climate and Space Sciences and Engineering, and Director of the Ideation Laboratory in the Department of Climate and Space Sciences and Engineering

The electrons absorb laser light and set up “momentum combs” (the hills) spanning the energy valleys within the material (the red line). When the electrons have an energy allowed by the quantum mechanical structure of the material—and also touch the edge of the valley—they emit light. This is why some teeth of the combs are bright and some are dark. By measuring the emitted light and precisely locating its source, the research mapped out the energy valleys in a 2D crystal of tungsten diselenide. Credit: Markus Borsch, Quantum Science Theory Lab, University of Michigan.

Mapping quantum structures with light to unlock their capabilities

Rather than installing new “2D” semiconductors in devices to see what they can do, this new method puts them through their paces with lasers and light detectors. | Medium Read