The Michigan Engineer News Center

How much coronavirus testing is enough? States could learn from retailers as they ramp up

To control the coronavirus spread, the U.S. needs to get the most value out of the limited testing capacity it has.| Short Read

Our campus, like the global community, is contending with COVID-19 and working to adapt to a new normal. Many are rapidly working on solutions. See all COVID-19 developments from University of Michigan Engineering.


By Shiqian Shen

As states develop plans to restart their economies, the big fear is that coronavirus cases will surge again. To keep the pandemic under control, strategic testing systems will be needed, and they will need to be scaled up fast.

But how many people should be tested? Who should be tested? And what should that testing system look like?

There isn’t one simple answer. The notion of “widespread testing” has a different meaning for big metropolitan areas, such as New York City and Detroit, than for rural areas like Montana or Alaska. For testing systems to be efficient, they need to be tailored to the demographics, circumstances and disease spread patterns for each.

As policymakers figure out the best design for each state or county, they could learn a lot from the retail industry, where strategic decisions such as where to locate warehouses and distribution centers are being made by companies like Amazon in the face of uncertain customer demand.

This article is republished from The Conversation. Read the full article.

Portrait of Gabe Cherry

Contact

Gabe Cherry
Senior Writer & Assistant Magazine Editor

Michigan Engineering
Communications & Marketing

(734) 763-2937

3214 SI-North

Researchers
  • Siqian Shen

    Siqian Shen

    Associate Professor of Industrial and Operations Engineering

The electrons absorb laser light and set up “momentum combs” (the hills) spanning the energy valleys within the material (the red line). When the electrons have an energy allowed by the quantum mechanical structure of the material—and also touch the edge of the valley—they emit light. This is why some teeth of the combs are bright and some are dark. By measuring the emitted light and precisely locating its source, the research mapped out the energy valleys in a 2D crystal of tungsten diselenide. Credit: Markus Borsch, Quantum Science Theory Lab, University of Michigan.

Mapping quantum structures with light to unlock their capabilities

Rather than installing new “2D” semiconductors in devices to see what they can do, this new method puts them through their paces with lasers and light detectors. | Medium Read