In one of her first engineering classes, Joi Mondisa encountered a problem – one that would lay the foundation for her life’s work as an engineering education researcher.
In the late 1990s, she had graduated at the top of her class at a multicultural high school in suburban Chicago. She had always excelled in math and science and worked well with other students. A college major in engineering seemed a perfect fit.
But at university, it was different. In one of her very first class discussions, she attempted to contribute to the group discussion. However, her ideas were ignored.
“It was like,” – she mimes tapping a microphone – “‘Is this thing on?’”
Mondisa noticed that some of her classmates chose not to sit next to her. And while classmates would work together on the homework, no one collaborated with her.
She grew uneasy. What was she doing wrong? She confided in a trusted faculty member – someone who would become one of her most influential mentors. But he had a hard time understanding Mondisa’s experience. He is a white man. She is an African-American woman.
This situation was not unique – not for her, or other underrepresented minority (often referred to as URM) students. A steady stream of studies from the 1990s to today has shown that many African American students experience a “chilly” campus climate at predominantly white institutions. In a challenging major like engineering, this lack of connection provides, at best, little support for the student, and at worst, withdrawal from the field. Scholars say it’s partially to blame for the low numbers of URM students in engineering.
Mondisa got through both her undergrad and grad school. In 2014, she attended Michigan Engineering’s NextProf, an annual workshop for women and URM early career scientists and engineers who are contemplating careers in academia. Today, Mondisa is at Michigan Engineering as an assistant professor of Industrial and Operations Engineering (IOE) and an engineering education researcher.
From this unique perch, she is analyzing systems within engineering education. She’s taking a quantitative approach to answering one of the most complicated questions in engineering education research: What is the role of social community in the retention of engineering undergrads, especially URMs?
“The curriculum for engineering is hard already. On top of that, an intimate knowledge of the higher education system is required to be successful,” says Mondisa. “Learning to navigate the system can be extremely difficult.”
Industrial and operations engineers analyze and optimize some of the most complex systems known to humans in areas such as healthcare, ergonomics and disaster planning. From her uniquely valuable position at the intersection of engineering and engineering education, and informed by her life’s experience, Mondisa aims to illuminate what mentoring methods, approaches and programs actually work – and why. She began by studying the mentors themselves.
The work has just begun.
“Her work, particularly for minority students, deals with an important issue,” said Mark Daskin, the Clyde W. Johnson Professor and chair of the Department of Industrial and Operations Engineering. “I really believe we need a diverse group of engineers if you want to have good engineering practice in this country. To design anything, you want a very diverse group of engineers and potential users.”
Her engineering education colleagues agree. “Mondisa works alongside her IOE colleagues, teaches IOE classes, and her research is in alignment with the department, but it’s outside of the scope of what they’ve normally done,” said Cindy Finelli, director of the Engineering Education Research Program and associate professor of Electrical Engineering and Computer Science. “So here at U-M, the work that Joi is doing is directly tied to IOE.”