The Michigan Engineer News Center

Inspired by art, lightweight solar cells track the sun

By borrowing from kirigami, the ancient Japanese art of paper cutting, researchers at the University have developed solar cells that can move with the sun.| Medium Read
Enlargekirigami solar cells

Solar cells capture up to 40 percent more energy when they can track the sun across the sky, but conventional, motorized trackers are too heavy and bulky for pitched rooftops and vehicle surfaces.

Now, by borrowing from kirigami, the ancient Japanese art of paper cutting, researchers at the University of Michigan have developed solar cells that can have it both ways.

Enlargesolar cell gif

“The design takes what a large tracking solar panel does and condenses it into something that is essentially flat,” said Aaron Lamoureux, a doctoral student in materials science and engineering and first author on the paper in Nature Communications.

Residential rooftops make up about 85 percent of solar panel installations in the U.S., according to a report from the Department of Energy, but these roofs would need significant reinforcing to support the weight of conventional sun-tracking systems.

A team of engineers and an artist developed an array of small solar cells that can tilt within a larger panel, keeping their surfaces more perpendicular to the sun’s rays.

“The beauty of our design is, from the standpoint of the person who’s putting this panel up, nothing would really change,” said Max Shtein, associate professor of materials science and engineering. “But inside, it would be doing something remarkable on a tiny scale: the solar cell would split into tiny segments that would follow the position of the sun in unison.”

Solar cell researchers think of tracking in terms of how much of a solar panel the sun can “see.” When the panel is at an angle, it looks smaller. By designing an array that tilts and spreads apart when the sun’s rays are coming in at lower angles, they raise the effective area that is soaking up sunlight.

To explore patterns, the team of engineers worked with paper artist Matthew Shlian, a lecturer in the U-M School of Art and Design. Shlian showed Lamoureux and Shtein how to create them in paper using a plotter cutter. Lamoureux then made more precise patterns in Kapton, a space-grade plastic, using a carbon-dioxide laser.

Enlargesolar cells
IMAGE:  Image credit: Aaron Lamoureux – University of Michigan

Although the team tried more complex designs, the simplest pattern worked best. With cuts like rows of dashes, the plastic pulled apart into a basic mesh. The interconnected strips of Kapton tilt in proportion to how much the mesh is stretched, to an accuracy of about one degree.

To make the solar array, Kyusang Lee, a doctoral student in electrical engineering, built custom solar cells in the lab of Stephen Forrest, the Peter A. Franken Distinguished University Professor of Engineering and Paul G. Goebel Professor of Engineering. He and Lamoureux attached them to an uncut piece of Kapton, leaving spaces for the cuts. Then, Lamoureux patterned the Kapton with the laser cutter.

The design with the very best solar-tracking promise was impossible to make at U-M because the solar cells would be very long and narrow. Scaling up to a feasible width, the cells became too long to fit into the chambers used to make the prototypes on campus, so the team is looking into other options.

Enlargesolar cell art

The optimized design is effective because it stretches easily, allowing a lot of tilt without losing much width. According to the team’s simulations of solar power generation during the summer solstice in Arizona, it is almost as good as a conventional single-axis tracker, offering a 36 percent improvement over a stationary panel. Conventional trackers produce about 40 percent more energy than stationary panels under the same conditions, but they are bulky, prone to catching the wind and ten or more times heavier, Shtein said.

“We think it has significant potential, and we’re actively pursuing realistic applications,” he said. “It could ultimately reduce the cost of solar electricity.”

The paper on this work is titled “Dynamic kirigami structures for integrated solar tracking.” The study was funded by the National Science Foundation and NanoFlex Power Corporation. The university is pursuing patent protection for the intellectual property, and is seeking commercialization partners to help bring the technology to market. Shtein is also an associate professor of chemical engineering, art and design and macromolecular science and engineering. Forrest is also a professor of electrical engineering and computer science, material science and engineering and physics.


More information


Dynamic kirigami structures for integrated solar tracking, Aaron Lamoureux, Kyusang Lee, Matthew Shlian, Stephen R. Forrest & Max Shtein


Stephen Forrest – Peter A. Franken Distinguished University Professor of Engineering and Paul G. Goebel Professor of Engineering
Kyusang Lee – Doctoral student in Prof. Forrest’s group
Max Shtein – Associate Professor in Materials Science and Engineering
Matt Shlian – Lecturer in U-M School of Art and Design
Aaron Lamoureux – Doctoral student in Prof. Shtein’s group

Project Brief

A team of engineers and an artist developed an array of small solar cells that can tilt within a larger panel, keeping their surfaces more perpendicular to the sun’s rays. Based on a Japanese paper cutting art, this design can enable sun-tracking solar panels.

In the News

Kirigami Paper-Cutting Art Inspires a Wild Solar Energy Idea – National Geographic, 9/8/15

Solar Panels Twist to Track the Sun’s Path – Discovery News, 9/11/15

Kirigami-inspired solar cells can track the sun without motors – Engadget, 9/11/15

Some Simple Slices Could Help Solar Cells Track the Sun – Gizmodo, 9/11/15

How Origami Makes for Better Solar Panels – Popular Mechanics, 9/8/15

Japanese Paper Cutting Trick for Moving Solar Cells – IEEE Spectrum, 9/9/15

How origami can make solar panels more efficient – Christian Science Monitor, 9/11/15

A Fix for Maximizing Energy from Solar Panels on Slanted Roofs – Technology Review, 9/11/15

University of Michigan solar cells inspired by Japanese kirigami – Slash Gear, 9/10/15

Kirigami-inspired solar cells twist to track the sun – Gizmag, 9/9/15

The Next Generation Of Solar Panels May Be Inspired By Ancient Japanese Papercraft – Think Progress, 9/9/15

Stretched kirigami-patterned thin-film solar cells track the sun – Laser Focus World, 9/8/15

kirigami solar cells
solar cell gif
solar cells
solar cell art
Portrait of Catharine June


Catharine June
ECE Communications and Marketing Manager

Electrical Engineering and Computer Science

(734) 936-2965

3301 EECS

The electrons absorb laser light and set up “momentum combs” (the hills) spanning the energy valleys within the material (the red line). When the electrons have an energy allowed by the quantum mechanical structure of the material—and also touch the edge of the valley—they emit light. This is why some teeth of the combs are bright and some are dark. By measuring the emitted light and precisely locating its source, the research mapped out the energy valleys in a 2D crystal of tungsten diselenide. Credit: Markus Borsch, Quantum Science Theory Lab, University of Michigan.

Mapping quantum structures with light to unlock their capabilities

Rather than installing new “2D” semiconductors in devices to see what they can do, this new method puts them through their paces with lasers and light detectors. | Medium Read