The Michigan Engineer News Center

Hurricane-forecast satellites to keep close eye on the tropics

A set of eight hurricane-forecast satellites being developed at Michigan Engineering will give deep insights into how and where storms suddenly intensify. That's a process that’s becoming more crucial to figure out as the climate changes.| Medium Read
n chambers that mimic the vacuum of space, Michigan Engineers are testing a prototype of NASA’s CYGNSS satellite system, which will enable unprecedented insights into the formation and evolution of hurricanes, typhoons and cyclones around the globe.

A set of eight hurricane-forecast satellites being developed at the University of Michigan is expected to give deep insights into how and where storms suddenly intensify – a little-understood process that’s becoming more crucial to figure out as the climate changes, U-M researchers say.

The Cyclone Global Navigation Satellite System (CYGNSS) is scheduled to launch in the fall of 2016. At the American Geophysical Union Meeting in San Francisco this week, U-M researchers released estimates of how significantly CYGNSS could improve wind speed and storm intensity forecasts.

In chambers that mimic the vacuum of space, Michigan Engineers are testing a prototype of NASA’s CYGNSS satellite system, which will enable unprecedented insights into the formation and evolution of hurricanes, typhoons and cyclones around the globe.

Because of their arrangement and number, the observatories will be able to measure the same spot on the globe much more often than the weather satellites flying today can. CYGNSS’s revisit time will average between four and six hours, and at times, it can be as fast as 12 minutes. Conventional weather satellites only cross over the same point once or twice a day. Meteorologists can use ground-based Doppler radar to help them make predictions about storms near land, but hurricanes, which form over the open ocean, present a tougher problem.

“The rapid refresh CYGNSS will offer is a key element of how we’ll be able to improve hurricane forecasts,” said Christopher Ruf, director of the U-M Space Physics Research Lab, professor of atmospheric, oceanic and space sciences and CYGNSS lead investigator.

“CYGNSS gets us the ability to measure things that change fast, like extreme weather. Those are the hardest systems to measure with today’s satellites. And because the world is warmer and there’s more energy to feed storm systems, there’s more likelihood of extreme weather.”

Through simulations, the researchers quantified the improvement CYGNSS could have on storm intensity predictions. They found that for a wind speed forecast that is off by 33 knots or 38 miles per hour – the average error with current capabilities – CYGNSS could reduce that by 9 knots, or about 10 mph. Considering that the categories of hurricane strength ratchet up on average every 20 mph, the accuracy boost is “a very significant  number,” Ruf said.

EnlargeScientist calibrates a prototype of the technology
IMAGE:  Jonathan Van Noord, research in the Department of Climate and Space Sciences and Engineering, calibrates a prototype of a CYGNSS microsatellite. Photo: Joseph Xu

“I’d describe the feeling about it as guarded excitement,” Ruf said. “It’s preliminary and it’s all based on models. People will be really excited when we get up there and it works.” The numbers could also improve as scientists update weather prediction tools to better use the new kind of information that CYGNSS will provide.

For people who live in common hurricane or typhoon paths, closer wind speed predictions could translate into more accurate estimates of the storm surge at landfall, Ruf said. That’s the main way these systems harm people and property. “The whole ocean gets higher because the wind pushes the water. That’s really hard to forecast now and it’s an area we hope to make big improvements in,” Ruf said.

Researchers expect the satellite system to give them new insights into storm processes. Hurricanes evolve slowly at first, but then they reach a tipping point, says Aaron Ridley, a professor of atmospheric, oceanic and space sciences.

“The hurricane could be meandering across the Atlantic Ocean and then something happens.” Ridley said. “It kicks up a notch and people aren’t exactly sure why. A lot of scientists would like to study this rapid intensification in more detail. With a normal mission, you might not be able to see it, but with CYGNSS, you have a better chance.”

The satellites will operate in a fundamentally different way than their counterparts do. Rather than transmit a signal and read what reflects back, they’ll measure how GPS signals from other satellites bounce off the ocean surface. Each of the eight CYGNSS nodes will measure signals from four of the 32 Global Positioning System satellites.

They’ll also be able to take measurements through heavy rain – something other weather satellites are, surprisingly, not very good at.

Scientist calibrates a prototype of the technology
Portrait of Nicole Casal Moore

Contact

Nicole Casal Moore
Media Relations & Research News Director

Michigan Engineering
Communications & Marketing

(734) 647-7087

3214 SI-North

Researchers
  • Chris Ruf

    Chris Ruf

    Professor of Climate and Space Sciences and Engineering and Professor of Electrical Engineering and Computer Science

  • Aaron Ridley

    Aaron Ridley

    Professor of Climate and Space Sciences and Engineering

Reading cancer’s chemical clues

A nanoparticle-assisted optical imaging technique could one day read the chemical makeup of a tumor. | Medium Read