The Michigan Engineer News Center

Combining flexible, transparent electronics with high speed communications for the first time

Prof. Zhaohui Zhong and his team of graduate students have built the first flexible, transparent digital modulator for high speed communications.| Short Read
EnlargeTransparent chip

The market is burgeoning in the area of flexible and wearable electronics. They are not only incorporated into a wide array of electronic devices such as displays, solar cells, automotive systems, and cell phones, they are being exploited in the fashion world. Flexible electronics also have enormous potential in wearable health monitoring devices and medical implants.

But if you wanted to communicate information efficiently from these electronic devices while retaining their flexible and sometimes transparent qualities, you were stuck – until now. Prof. Zhaohui Zhong and his team of graduate students, Seunghyun Lee, Kyunghoon Lee, Chang-Hua Liu, and Girish S. Kulkarni, have built the first flexible, transparent digital modulator for high speed communications, made solely out of graphene.

“One of the most important elements in communications is modulating the signal,” stated Prof. Zhong. “If you want to broadcast music on a radio station, or send information electronically, you have to modulate and encode information into a carrier wave, and that’s done by modulators.”

Existing digital modulators are typically made from silicon, which is rigid and non-transparent, and therefore not suitable for applications where you want the electronics to be flexible. Graphene has previously been investigated for use in high speed communications because it’s fast (it can operate up to 300 GHz) and it’s reliable.

“Graphene is unique,” explains Zhong. “It’s comprised of only one layer of carbon so it’s flexible. Because it’s only one layer, it has low absorption – making it transparent as well. We show that we can make the entire circuit out of graphene, making it flexible, transparent, and high speed.”

Compounding the importance of Zhong’s work is the fact that this is the first time anyone has shown quaternary modulation with a graphene circuit. Why is this important? It results in 2x the speed of binary modulation, which was the former state of the art. Zhong’s group demonstrated a quaternary modulation scheme called Quadrature Phase-Shift Keying (QPSK) modulation on their all-graphene circuits. QPSK modulation is the building block for more complicated modulation schemes found in current telecommunication standards.

Their device is also relatively simple, thanks to graphene’s unique quality of being nonlinear and ambipolar (normal transistors are unipolar). Their QPSK modulation uses only two transistors to accomplish the same amount of work accomplished with a multitude of circuits in other methods.

“We’ll continue to make improvements,” stated Prof. Zhong. “In this work we demonstrated that the modulators work within the KHz range. We want to push it to GHz, which is entirely possible based on the device itself.”

Prof. Zhong has applied for patent protection on this technology.

Transparent chip
Portrait of Catharine June


Catharine June
ECE Communications and Marketing Manager

Electrical Engineering and Computer Science

(734) 936-2965

3301 EECS

Student uses a device to measure bacterial levels in urine samples

Blue Sky: Up to $10M toward research so bold, some of it just might fail

Inspired by startup funding models, Michigan Engineering reinvents its internal R&D grant structure. | Medium Read